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SUMMARY

Hunger is controlled by specialized neural circuits
that translate homeostatic needs into motivated be-
haviors. These circuits are under chronic control by
circulating signals of nutritional state, but their rapid
dynamics on the timescale of behavior remain un-
known. Here, we report optical recording of the nat-
ural activity of two key cell types that control food
intake, AgRP and POMC neurons, in awake behaving
mice. We find unexpectedly that the sensory detec-
tion of food is sufficient to rapidly reverse the activa-
tion state of these neurons induced by energy deficit.
This rapid regulation is cell-type specific, modulated
by food palatability and nutritional state, and occurs
before any food is consumed. These data reveal that
AgRP and POMC neurons receive real-time informa-
tion about the availability of food in the external
world, suggesting a primary role for these neurons
in controlling appetitive behaviors such as foraging
that promote the discovery of food.
INTRODUCTION

Food intake is controlled by evolutionarily hard-wired neural cir-

cuits that contain specialized neural cell types. Two cell types in

the arcuate nucleus (ARC) of the hypothalamus are known to be

particularly important for the control of feeding. These neurons

are identified by expression of the neuropeptides Agouti-related

Protein (AgRP) and Proopiomelanocortin (POMC) and have

opposing functions. AgRP neurons are activated by energy

deficit (Hahn et al., 1998) and promote food seeking and con-

sumption. Optogenetic or chemogenetic activation of AgRP neu-

rons induces voracious eating in sated mice (Aponte et al., 2011;

Krashes et al., 2011), whereas inhibition or ablation of AgRP neu-

rons results in aphagia (Gropp et al., 2005; Krashes et al., 2011;

Luquet et al., 2005). These effects of AgRP neurons aremediated

by release of GABA as well as two neuropeptides, AgRP and

NPY, that stimulate food intake when delivered into the brain

(Clark et al., 1985; Fan et al., 1997; Ollmann et al., 1997; Tong

et al., 2008). POMC neurons by contrast are activated by energy

surfeit and their activity inhibits food intake and promotes weight

loss. These two cell types interact in part through a common set

of downstream neural targets that express melanocortin recep-

tors, which are activated by POMC and inhibited by AgRP (Fan
et al., 1997; Ollmann et al., 1997; Seeley et al., 1997). Thus,

AgRP and POMC neurons are two intermingled, interacting neu-

ral cell types that have opposing roles in the control of feeding.

Despite intense investigation of these cells over the past 20

years, their activity dynamics during behavior remain unknown.

This knowledge gap reflects the difficulty of recording cell-

type-specific neural activity within heterogeneous deep brain

structures such as the hypothalamus. As a result, our current

understanding of the regulation of AgRP and POMC neurons is

based on a combination of approaches that include in vitro elec-

trophysiology, c-fos staining, pharmacology, and geneticmanip-

ulations. These pioneering studies have revealed a dominant

role for circulating hormones and nutrients in the control of these

cells (WilliamsandElmquist, 2012). AgRPandPOMCneurons are

modulated by hormones such as ghrelin and leptin (Cowley et al.,

2001, 2003; Nakazato et al., 2001; Pinto et al., 2004) as well

as circulating nutrients (Blouet and Schwartz, 2010) in part

via their metabolic effects on mitochondrial dynamics (Dietrich

et al., 2013; Schneeberger et al., 2013). Together, these findings

have led toagenerally acceptedmodel inwhichAgRPandPOMC

neurons function as interoceptors that monitor the concentration

of hormones and nutrients in the blood and then gradually

adjust their activity in parallel with changes in nutritional state.

This model provides a compelling explanation for how nutritional

changes can be translated into counterregulatory responses but

leaves unanswered the question of whether these neurons are

also subject to rapid regulation on the timescale of behavior.

AgRP and POMC neurons also receive abundant synaptic

input which provides the potential for more rapid modulation.

However, the function of this afferent input is not well under-

stood. Fasting increases excitatory tone onto AgRP neurons

(Liu et al., 2012; Yang et al., 2011), and one source of such excit-

atory input is neurons in the paraventricular hypothalamus (PVH)

(Krashes et al., 2014). AgRP neurons also receive inhibitory input

from the dorsomedial hypothalamus (DMH) among other sour-

ces (Krashes et al., 2014). POMC neurons by contrast receive

inhibitory input from cells in the ARC, including neighboring

AgRP neurons, as well as excitatory input from the ventromedial

hypothalamus (VMH) and other regions (Cowley et al., 2001;

Krashes et al., 2014; Pinto et al., 2004; Sternson et al., 2005;

Vong et al., 2011). As these circuit connections have only

recently been described, their regulation and function are not

yet clear. An important open question regards the nature of the

information that these presynaptic cells communicate to their

AgRP and POMC targets.

In the present study, we have used an optical approach to

record the natural activity of AgRP and POMC neurons in awake
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Figure 1. Optical Recording of AgRP and POMC Neuron Activity in Awake Behaving Mice

(A) FLEX AAV used to drive GCaMP6s expression.

(B) Response of AgRP and POMC neurons to current ramp. Scale bar represents GCaMP6s fluorescence normalized to 1.0 at start of the experiment (Fn).

(C) Membrane potential and GCaMP6s fluorescence in response to sequential 10 pA current steps of duration 2 s separated by 20 s.

(D) Relationship between action potential number and fluorescence for cells in (C).

(E) R2 and p values for the linear regression of fluorescence versus action potential number for 16 POMC and 14 AgRP neurons.

(F) Schematic of the fiber photometry setup.

(G) Coronal section from AgRP and POMC mice showing path of optical fiber and injection site. Scale bar represents 1 mm.

(H) Fluorescence trace during cage exploration for mice expressing GCaMP6s or GFP in AgRP neurons or POMC neurons.

All error bars represent ± SEM.

See also Figure S1.
behaving mice. These experiments have unexpectedly revealed

that AgRP and POMC neurons are strongly regulated in vivo by

the sensory detection of food. This rapid sensory regulation re-

sets the activation state of these cells induced by food depriva-

tion prior to the start of food consumption. This rapid regulation

also contains information about the food’s hedonic properties

and depends on the animal’s nutritional state. These findings

reveal that AgRP and POMC neurons receive real-time informa-

tion about the availability of food in the outside world, which they

then use to anticipate the nutritional value of a forthcoming meal

and adjust their activity in advance. This anticipatory regulation

provides a mechanism to rapidly inhibit foraging upon food

discovery, suggesting a primary role for these neurons in the

regulation of appetitive behaviors in vivo.
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RESULTS

Optical Recording of AgRP and POMC Neuron Activity in
Awake Behaving Mice
In order to gain deeper insight into the regulation of AgRP and

POMC neurons, we sought to record their natural activity during

feeding behavior. To do this, we used fiber photometry (Cui

et al., 2013; Gunaydin et al., 2014), an approach that employs

a multimode optical fiber to record the total fluorescence

from a population of neurons expressing a calcium reporter

for neural activity (Figure 1F). By targeting the calcium reporter

to a specific cell type, this method enables optical recording

of the real-time activity of a molecularly defined population

of neurons within a deep brain structure. The resulting trace



represents the integrated activity of the neurons defined

by a genetic marker and anatomic location and therefore is

particularly well-suited for use in the hypothalamus, which con-

tains genetically separable populations of neurons with distinct

functions.

We first confirmed that calcium signals from AgRP and

POMC neurons correlate with changes in firing rate ex vivo.

We targeted the sixth generation calcium reporter GCaMP6s

(Chen et al., 2013) to AgRP and POMC neurons by stereotaxic

injection of Cre-dependent AAVs into AgRP-IRES-Cre and

POMC-Cre mice (Figure 1A). We then prepared acute brain

slices for imaging, and fluorescent cells in the ARC were iden-

tified for whole-cell current clamp recordings. Activation by

depolarizing current ramp (0–40 pA, 10 s) induced bursts

in firing accompanied by increased GCaMP6s fluorescence

(Figure 1B). To quantify the relationship between firing rate

and fluorescence signal, we applied step currents (�20 pA

to +120 pA, 10 pA increments), which resulted in progressive

increases in spikes and fluorescence (Figure 1C). Quantification

of this response revealed a linear correlation between action

potential number and GCaMP6s signal (Figures 1D and 1E).

Thus, GCaMP6s can report on activity dynamics in AgRP and

POMC neurons as shown for other cell types (Chen et al.,

2013).

To apply this approach in vivo, we injected AAVs expressing

GCaMP6s into the ARC of the corresponding Cre mice and in

the same surgery installed an optical fiber unilaterally above

the ARC (Figure S1). After allowing 2 weeks for transgene

expression, we connected mice to a photometry rig and re-

corded fluorescence from these cells as mice explored a feeding

chamberwithout access to food. Baseline recordings fromAgRP

and POMC neurons showed dynamic fluctuations (�10%–20%

DF/F) that resembled bursts of synchronous activity observed

in other cell types (Cui et al., 2013; Gunaydin et al., 2014) (Fig-

ure 1H). These dynamics were unrelated to mouse movement,

unaffected by changes in ambient lighting, and absent from re-

cordings from control mice expressing GFP in AgRP or POMC

neurons (Figure 1H), indicating that they represent calcium-

dependent GCaMP6s signals.

To test the sensitivity of this assay to detect changes in neu-

ral activity, we challenged mice with ghrelin, a hormone that ac-

tivates AgRP neurons and inhibits POMC neurons (Cowley

et al., 2003; Nakazato et al., 2001). Mice expressing GCaMP6s

in either AgRP or POMC neurons were acclimated to a behav-

ioral chamber, given an intraperitoneal injection of ghrelin, and

then returned to the chamber. Ghrelin sharply increased cal-

cium signals from AgRP neurons (DF/F = 71% ± 10% at

5 min, p < 0.001 compared to vehicle) (Figures 2A and 2B;

Movie S1). This increase began within seconds of injection

(mean latency = 33 ± 7 s) and reached a plateau within 2 min

(t = 76 ± 12 s, where t is the exponential time constant corre-

sponding to the time after injection resulting in �63.8% of the

total change). In the absence of further intervention, this in-

crease in AgRP activity was sustained for the duration of the

recording (DF/F = 62% ± 10% at 15 min) (Figure 2B). By

contrast injection of vehicle (PBS) had no effect on the activity

of AgRP neurons (DF/F = �3% ± 2% at 5 min) (Figure 2B;

Movie S1).
POMC neurons showed the opposite response, with ghrelin

injection rapidly and potently inhibiting POMC activity (t =

160 ± 17 s; DF/F = �49% ± 4% at 15 min, p = 0.001 compared

to vehicle) (Figures 2C and 2D; Movie S2). Interestingly, vehicle

injection alone produced a small but reversible drop in POMC

activity (Figure 2D; Movie S2). This transient decline in POMC

activity was consistently observed following animal handling,

suggesting that POMC but not AgRP neurons receive an inhibi-

tory stress regulated input.

We next tested the effect of food on the response to ghrelin.

Our prediction based on the known nutritional regulation of these

cells was that food consumption would gradually inhibit AgRP

neurons and activate POMC neurons as animals transitioned

from hunger to satiety. To test this, we challenged mice with

ghrelin and then 20 min later presented them with a pellet of

chow. Unexpectedly, we found that food presentation alone

rapidly reversed much of the effect of ghrelin treatment (DF/

F = �29% ± 3% at 2 min for AgRP neurons and DF/F = 80% ±

3% at 2 min for POMC neurons) (Figure 2). This response began

immediately upon placing food in the cage and was complete

within seconds (t = 12 ± 2 s for AgRP neurons; t = 44 ± 3 s for

POMC neurons). All animals tested showed this response to

food presentation (traces for ten mice are shown in Figure 2E),

suggesting that it represents a general mechanism that regulates

the activity of these neurons in vivo.

Food Detection Reverses the Effects of Fasting on AgRP
and POMC Activity
The regulation of AgRP and POMCneurons by sensory detection

of food has not previously been described. To investigate this

phenomenon under more physiologic conditions, we fasted

mice overnight and then presented a pellet of chow. As observed

for ghrelin-treated animals, food presentation to fasted mice

strongly inhibited AgRP neurons (DF/F = �37% ± 4%, at

5 min, p < 0.001 compared to object) and activated POMC neu-

rons (DF/F = 38% ± 5% at 5 min, p < 0.001 compared to object)

(Figure 3; Movies S3 and S4). These responses began the

moment that food was presented and were rapidly complete

(t = 20 ± 4 s for AgRP neurons and t = 42 ± 18 s for POMC neu-

rons). To quantify the extent to which these changes required

food consumption, we analyzed video data to estimate the

moment at which the first bite of food was consumed in each trial

and then aligned calcium traces to this event. This revealed that

most of the activity changes in these neurons were already com-

plete by the time food intake was initiated (96% ± 6% complete

before feeding in AgRP neurons, 85% ± 5% in POMC neurons)

(Figures 3H and 3I). Thus, the response of AgRP and POMC neu-

rons to food is triggered primarily by food detection rather food

consumption. Of note, these stereotyped responses to food pre-

sentation were consistently observed in the first trial of each

mouse (Figure 3G), indicating that this effect does not require

prior training.

We investigated the determinants of this rapid response to

food discovery. Presentation of an inedible object (a rubber stop-

per similar in size to a piece of chow) had little effect on the ac-

tivity of AgRP neurons (DF/F = 4.9% ± 2.2%) and induced a small

change in POMC neurons in the opposite direction of food (DF/

F = �10% ± 2%). Thus, the response of these neurons to food
Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc. 831
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Figure 2. Ghrelin Rapidly Modulates AgRP and POMC Neurons

(A and C) Recordings from a mouse expressing GCaMP6s in AgRP or POMC neurons that was challenged with injection of ghrelin (light gray) followed by

presentation of a pellet of chow (dark gray).

(B and D) Calcium signals from AgRP and POMC neurons aligned to the time of PBS or ghrelin injection, or chow presentation to ghrelin-treated mice. Red and

gray indicate the mean response and SE (AgRP, n = 7; POMC, n = 5). In each trial fluorescence was normalized by assigning a value of 1.0 to the median value of

data points within a 2-min window at �5 min before treatment.

(E) Peri-event plots showing the response from a single trial of five AgRP mice and five POMC mice.

All error bars represent ± SEM.

See also Movies S1 and S2.
presentation is food-specific (Figure 3; Movies S3 and S4). The

sensitivity of these cells to food presentation also depended on

nutritional state, as AgRP neurons from ad-libitum-fed mice

showed no response to food presentation (DF/F = �4.7% ±

1.0%, p = 0.21 compared to object) whereas POMC neurons

from ad-libitum-fed mice showed a greatly diminished response

(DF/F = 4.7% ± 2.4%, p = 0.01 compared to object) (Figures 3E

and 3F). Thus, conditions that reflect energy deficit, such as

fasting or ghrelin treatment, potentiate the response of AgRP

and POMC neurons to food detection.

Food Quality Influences the Magnitude of the Response
We considered the possibility that the response of AgRP and

POMC neurons to food presentation depends on the food’s

hedonic properties. In this regard, sensory cues associated

with palatable or energy dense foods trigger activation of brain

regions involved in reward, but how this hedonic information is

integrated with homeostatic signals remains poorly understood.

To investigate this, we first measured the response to peanut

butter, an energy dense food that mice will eat in preference to
832 Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc.
chow and is considered rewarding. Mice were fasted overnight,

acclimated to a behavioral chamber, and then presented with

either pellet of chow or a dollop of peanut butter. Presentation

of peanut butter strongly inhibited AgRP neurons (DF/F =

�54% ± 6% at 5 min) (Figure 4A) and activated POMC neurons

(DF/F = 101% ± 31% at 5 min) (Figure 4C). These responses

began immediately upon food presentation (Movies S5 and S6)

and were complete in <1 min (t = 23 ± 6 s for AgRP and t =

29 ± 6 s for POMC). The responses to peanut butter were signif-

icantly larger than the responses to chow (Figure 4E) and indeed

were comparable inmagnitude (but opposite in sign) to the effect

of injection with pharmacologic doses of ghrelin (Figure 4F),

which to our knowledge is the strongest known stimulus that

modulates these cells.

A defining feature of palatable foods is that animals will

consume them in the absence of hunger because they are intrin-

sically rewarding (e.g., eating dessert after a meal). We therefore

tested whether AgRP and POMC neurons from ad-libitum-fed

mice, which show little or no response to chow (Figure 3), would

nonetheless respond to thepresentation of peanutbutter. Indeed,
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Figure 3. Sensory Detection of Food Rapidly Regulates AgRP and POMC Neurons

(A and D) Recordings from fasted mice expressing GCaMP6s in AgRP or POMC neurons presented with a pellet of chow (gray).

(B and E) Plots of calcium signals from AgRP and POMC neurons aligned to the time of presentation of a pellet of chow (red) or inedible object (black). Mice were

either subjected to an overnight fast (left) or fed ad libitum (right) prior to experiment. Gray indicates SE (AgRP, n = 10; POMC, n = 5).

(C and F) Quantification of fluorescence changes 5 min after event, as indicated.

(G) Peri-event plots aligned to the time of event. Each row is a single trial of a different mouse.

(H) Calcium signals aligned to the initiation of feeding for AgRP and POMC neurons.

(I) Quantification of change in fluorescence that occurs before feeding is initiated versus the total change in the trial. *p < 0.05. **p < 0.01,***p < 0.001,****p <

0.0001.

All error bars represent ± SEM.

See also Movies S3 and S4.
we found thatpresentationofpeanutbutter toad-libitum-fedmice

strongly inhibited AgRP neurons (DF/F = �24% ± 4%, at 5 min,

p < 0.001 compared to chow) and activated POMC neurons

(DF/F=55%±11%,at5min,p=0.14compared tochow) (Figures

4A and 4C). Thus, more palatable food can modulate these

neurons even in the absence of signals of energy deficit.

To further probe this relationship, we tested whether the

response of these neurons to different foods depended on the

order in which they were presented. Mice were fasted overnight

and then sequentially presented with an inedible object, peanut
butter, or chow in randomized order at 10-min intervals. We then

calculated the change in activity that occurred following each of

these presentations. This revealed that presentation of peanut

butter could completely block the subsequent neural response

to presentation of chow (Figures 4B and 4D). By contrast, pre-

sentation of chow had no effect on the response to peanut butter

in POMC neurons (Figure 4D) and only partially diminished the

response in AgRP neurons (Figure 4B). The asymmetry in the

response to these two foods is consistent with their differential

effects in fasted and fed mice.
Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc. 833
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Figure 4. Food Palatability Determines the Magnitude of the Response to Food Detection

(A and C) Calcium signals from AgRP and POMC neurons in fasted and fed mice aligned to the time of presentation of peanut butter or chow.

(B and D) Fluorescence change of AgRP and POMC neurons upon sequential presentation of an inedible object, chow, and peanut butter in fasted mice.

(E) Quantification of responses of AgRP and POMC neurons 5 min after food presentation.

(F) Plot showing the response of AgRP and POMC neurons over 5 min to different foods and pharmacologic treatments in the context of varying nutritional states.

All traces start at the origin (0,0) and emanate outward. Arrows indicate the direction of movement.

All error bars represent ± SEM.

See also Figure S2 and Movies S5 and S6.
To extend these findingswe tested a chocolate, a second food

that is commonly used in rodent studies of reward.We found that

presentation of chocolate (Hershey Kiss) to fasted mice inhibited

AgRP neurons to a greater extent than chow (Figure S2A). Like

peanut butter, chocolate also elicited a response in AgRP neu-

rons from ad-libitum-fed mice that are unresponsive to chow

(Figure S2B). Sequential presentation experiments revealed

that chocolate could block the neural response to subsequent

presentation of chow, but not vice versa, similar to our observa-

tions with peanut butter (Figures S2D and S2E). Although choc-

olate was a novel food for these animals, we observed responses

to chocolate presentation in the first trial, indicating mice could

identify it as food without prior experience. However, the speed

of the response to chocolate increased during subsequent tests,

suggesting involvement of a learning process as well (t = 40 ± 8 s
834 Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc.
in trial 1 versus 17 ± 2 s in trial 4, p < 0.01) (Figure S2C). Collec-

tively, these data show that the rapid sensory regulation of AgRP

and POMC neurons contains information about the hedonic

properties of the food that has been detected.

Food Accessibility Modulates the Response to Food
Discovery
Most of the response of AgRP and POMC neurons to food

presentation occurred before food intake was initiated (Figures

3H and 3I). We therefore wondered whether food consumption

played any role in this response. To test this, mice were fasted

overnight and then presented with peanut butter in a container

that allowed the food to be seen and smelled but not consumed

(Figure 5A). Presentation of this inaccessible peanut butter

rapidly activated POMC neurons (DF/F = 43% ± 9% after



2 min; t = 31 ± 8 s) and inhibited AgRP neurons (DF/F = �39% ±

4% after 2 min; t = 21 ± 4 s) (Figures 5B and 5C). Similar re-

sponses were observed in mice pretreated with ghrelin (Figures

S3A and S3B). These responses occurred as quickly as the

response to accessible food, but were somewhat smaller in

magnitude (Figures S3C and S3D), and the response of POMC

neurons was less durable (Figures 5B and 5C). This indicates

that food accessibility canmodulate the strength of the response

to food presentation.

To further dissect this effect, we tested whether an isolated

sensory cue could modulate the activity of these two cell types.

As mice rely heavily on the sense of smell, we tested whether the

smell of peanut butter could elicit an activity change in AgRP and

POMCneurons.Micewere fasted overnight and then exposed to

peanut butter placed underneath the cage in a covered container

so that it could be smelled but not seen or accessed (Figure 5D).

We found that this ‘‘hidden peanut butter’’ rapidly modulated

AgRP and POMC neurons in a way that resembled food presen-

tation (DF/F = �12% ± 5% after 1 min in AgRP neurons and DF/

F = 17% ± 6% after 1 min in POMC neurons) (Figures 5E and 5F).

However, this effect was much smaller in magnitude and tran-

sient, with neural activity returning to baseline within 8 min (DF/

F = 8.3% ± 4.5% after 8 min in AgRP neurons and DF/F =

�3.0% ± 4.0% after 8 min in POMC neurons) (Figures 5F and

S3). Together, these data suggest that food-associated sensory

cues can modulate these two cell types, but that the magnitude

and durability of this response depends on the extent to which

these cues are interpreted as representing access to food.

Food Removal Reverses the Effects of Food
Presentation
The response of AgRP and POMC neurons to food presentation

is consistent with a model in which these neurons anticipate the

change in their activity that will occur after food consumption and

then enact this change in advance, taking into account factors

such as the food’s energy density, the food’s accessibility, and

the animal’s nutritional state. A prediction of this model is that

the response to food presentation should be reversed if the

food is removed before it can be consumed. To test this, mice

were fasted overnight, presented with accessible chow, and

then the food was removed after either a 2-, 10-, or 30-min inter-

val. As predicted, we found that food removal reversed the ef-

fects of food presentation, resulting activation of AgRP neurons,

and inhibition of POMC neurons (Figures 5G and 5J; for clarity

only data after 2 and 10 min removal are shown). The magnitude

and kinetics of this reversal depended on the duration that mice

were given food access. For example, mice given access to food

for 30 min showed a smaller reversal of AgRP and POMC neuron

activity following food removal than mice given access to food

for 2 or 10 min (Figures 5H and 5K). Extended food access

also slowed the response to food removal in AgRP but not

POMCneurons (Figures 5I and 5L). These findings are consistent

with food consumption during the feeding interval partially reset-

ting the activation state of these neurons.

The response to food removal exhibited hysteresis, occurring

�10-fold more slowly than the initial response to food presenta-

tion (Figures 5I and 5L). This asymmetry was observed after only

2 min food access in both AgRP (t = 15 ± 1 s versus 258 ± 26 s,
p < 0.0001) and POMC neurons (t = 19 ± 3 s versus 269 ± 66 s,

p = 0.03) and therefore was unlikely to be caused by the post-

ingestive effects of food consumption. Rather, this suggests

that the circuit interprets the sensory detection of food in such

a way that food removal induces a more gradual change than

food discovery.

Neural Dynamics within Feeding Bouts
We have focused on the initial response of AgRP and POMC

neurons to food presentation, because this response is much

larger than the fluctuations in the activity of these neurons that

occur during feeding (Figures 3A and 3D). However, we consid-

ered the possibility that these smaller intrameal dynamics might

also be correlated with components of behavior. To test this, we

switched to a system in which mice were fed a liquid diet (vanilla

Ensure) via a lickometer so that we could align individual feeding

bouts to photometry data with millisecond precision.

Mice were transitioned from a solid to liquid diet over several

days, then fasted overnight and tested in a 1-hr trial. Licks

were aligned to photometry traces and individual feeding bouts

defined as clusters of licks separated from their nearest neighbor

by >20 s. This resulted in identification of an average of 17 ± 2

feeding bouts in each 1-hr trial, with each bout lasting an average

of 17 ± 3 s and containing 53 ± 10 licks. The start of each bout

in a representative trial is indicated by gray lines in Figures 6A

and 6B.

We compared the average activity of these neurons during

active feeding (intrabout) versus intermeal intervals (interbout),

by calculating the difference in fluorescence between these

stages (interbout� intrabout). This revealed that POMC neurons

were more active during feeding whereas AgRP neurons were

less active (DFn = 0.042 ± 0.011 for AgRP versus DFn =

�0.029 ± 0.004 for POMC, p = 0.001) (Figure 6C). To investigate

the dynamics underlying these differences, we aligned each

feeding bout so that the start of the bout (first lick) corresponded

to time zero and then analyzed a 10-s window flanking this

moment. We found that AgRP and POMC neurons showed a

consistent pattern of activity that predicted the onset of each

meal. AgRP neurons declined in activity until the moment of

the first lick and then their activity flattened (Figure 6D), whereas

POMC neurons increased in activity prior to and throughout the

start of feeding (Figure 6E). Cross-correlation analysis between

AgRP and POMC showed that there was an inverse correlation

between the activity of these two cell types that reached a

peak at approximately time zero (Figure 6F). These effects

were tightly linked to behavioral state, as they were robust to

changes in the definition of a feeding bout (e.g., changes in the

minimum intermeal interval) yet were completely absent when

the data were re-analyzed using randomly generated feeding

bouts (Figures 6D and 6E, black). Remarkably, these intrameal

anticipatory changes in AgRP and POMCactivity appear to reca-

pitulate, on a smaller scale, the dramatic changes in activity that

occur in these neurons in response to food presentation.

Dynamics of AgRP Projections to the PVH
AgRP neurons project broadly to brain regions involved in the

control of food intake in a primarily one-to-one configuration

(Betley et al., 2013). Optogenetic experiments have identified
Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc. 835
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Figure 5. The Response to Food Detection Depends on Food Accessibility and Is Reversible

(A) Schematic of caged peanut butter.

(B) Calcium signals aligned to the time of presentation of a caged peanut butter.

(C) Change in fluorescence 1 and 8 min after caged peanut butter presentation.

(D) Schematic of hidden peanut butter.

(E) Calcium signals aligned to the time of presentation of hidden peanut butter.

(F) Change in fluorescence 1 and 8 min after hidden peanut butter presentation.

(G and J) Chow was presented at time 0, and then food was removed at 2 min (red), 10 min (blue) or not removed (black).

(legend continued on next page)
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Figure 6. Intrameal Dynamics of AgRP and POMC Neurons

(A and B) Traces of AgRP and POMC activity in mice during consumption of a liquid diet. Licks that mark initiation of a feeding bout are shown in gray.

(C) Difference in average fluorescence between periods of feeding (intrabout) and intermeal intervals (interbout) for each mouse.

(D and E) Calcium signals from AgRP and POMC neurons aligned to themoment of the first lick that initiates a feeding bout. Data from actual feeding bouts shown

in red; data from simulated randomly generated feeding bouts in black.

(F) Cross-correlation plots showing the correlation between activity of AgRP and POMC neurons before and after licking. Red is mean, gray is 28 individual

comparisons between AgRP (n = 7) and POMC (n = 4) mice.

(G andH) Peri-event plots showing the activity of AgRP andPOMCneurons aligned to the start of feeding bouts. The top plot shows all of the bouts for one trial of a

mouse. The bottom plot shows the average response across all bouts for seven AgRP and four POMC mice.

All error bars represent ± SEM.
AgRP projections to the PVH as being particularly important for

the control of feeding (Atasoy et al., 2012). As fiber photometry

enables directmonitoring of axonal calcium transients (Gunaydin

et al., 2014), we sought to record the activity of these key AgRP

(ARC / PVH) projections during behavior.

AAVs expressing Cre-dependent GCaMP6s were delivered to

the ARC of AgRP-IRES-Cre mice and in the same surgery an
(H and K) Recovery in fluorescence 20 min after food removal for experiments in

(I and L) Time constant for the response to upon food presentation and food rem

All error bars represent ± SEM.

See also Figure S3.
optical fiber was implanted ipsilaterally in the PVH (Figure 7A).

Photometry recordings 4 weeks after surgery revealed sponta-

neous synchronous activity in these projections (Figure 7B)

that resembled calcium dynamics observed in AgRP cell bodies

(Figure 1H), albeit somewhat smaller in magnitude. Intraperito-

neal injection of ghrelin, but not vehicle, induced a rapid increase

in calcium signals in these projections (DF/F = 17% ± 5% for
which food was removed after 2, 10, or 30 min.

oval after 2 and 10 min.
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Figure 7. Natural Dynamics of AgRP Projections to the PVH

(A) Schematic showing infection of cell bodies in the ARC and installation of

optical fiber in the PVH. Scale bar represents 0.5 mm.

(B) Recording from PVH of a fasted mouse presented sequentially with an

inedible object, peanut butter, and chow.

(C and E) Calcium signals from PVH of mice presented sequentially with an

inedible object, peanut butter, and chow.

(D and F) Quantification of calcium signals 5 min after event (n = 4 mice).

(G) Model for regulation of AgRP and POMC neurons by homeostatic and

sensory information.

All error bars represent ± SEM.

See also Figure S4.
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ghrelin versus�9% ± 3% for PBS at 5 min, p = 0.02) (Figure S4),

indicating that they are appropriately regulated by hormonal

signals.

We next tested the effect of food presentation. Mice were

fasted overnight and then presented with either an inedible ob-

ject, chow, or peanut butter. Presentation of either chow or pea-

nut butter rapidly and potently inhibited calcium dynamics in

AgRP (ARC/ PVH) projections (DF/F = �30% ± 2% for peanut

butter versus �21% ± 3% for chow at 5 min) whereas presenta-

tion of an inedible object had no effect (Figures 7C and 7E). Of

note, peanut butter almost completely eliminated detectable

synchronous activity in PVH axons (Figures 7B and 7C), suggest-

ing that palatable food presentation is particularly potent in

suppressing the activity of this pathway. Assays utilizing sequen-

tial food presentation revealed a pattern of responses in PVH

projections that closely resembled responses observed in

AgRP cell bodies (Figures 7D and 7F). Likewise, chow presenta-

tion partially reversed the activation of these PVH projections

by ghrelin (Figure S4). Thus, the activity of AgRP (ARC / PVH)

projections is regulated by ghrelin and food presentation in a

way that mirrors the population response in the ARC.

DISCUSSION

It has been known for more than 75 years that the hypothalamus

plays a critical role in the control of food intake (Hetherington and

Ranson, 1939), yet the dynamics of the hypothalamic circuits

that give rise to feeding behavior have remained a mystery.

Here, we have used an optical approach to record the natural

dynamics of the two most widely studied cell types that control

feeding, AgRP and POMC neurons, in awake behaving mice.

These experiments have revealed unexpectedly that these neu-

rons are potently regulated by the sensory detection of food. This

rapid regulation resets the activation state of AgRP and POMC

neurons induced by orexigenic signals such as ghrelin or fasting.

The magnitude and robustness of this response suggests that it

is a primary mechanism that controls the activity of these neu-

rons in vivo. The speed of this response suggests that it is likely

mediated by neural input. The dependence on food palatability

suggests that this response contains information about the

food’s hedonic properties or energy content, possibly through

a learned association with smells or other sensory cues. Collec-

tively, these findings reveal that AgRP and POMC neurons

receive real-time information about the availability of food in

the external world, which they then integrate with homeostatic

signals arising from the body (Figure 7G). This demonstrates a

more complex and dynamic role for these circuits in the control

of feeding behavior than is currently appreciated.

Sensory Feedback Enables Rapid Inhibition of
Appetitive Processes
The rapid sensory regulation of AgRP and POMC neurons is

counterintuitive, since it appears to ‘‘short circuit’’ their well-es-

tablished function as interoceptive sensors of nutritional state. In

this model, energy deficit activates AgRP neurons and inhibits

POMCneurons, thereby generating amotivational drive that pro-

motes food intake and is only relieved when energy stores are re-

plenished. An assumption of this model is that internal signals



generated during feeding (e.g., accumulation of circulating nutri-

ents or hormones) are responsible for resetting the activation

state of these neurons and thereby reducing the drive to eat.

Our data, by contrast, show that food detection alone rapidly

resets the activity of these two cell types and that this resetting

precedes the onset of actual food consumption. This is surpris-

ing in light of the fact that stimulation of AgRP neurons is suffi-

cient to promote food intake (Aponte et al., 2011; Krashes

et al., 2011). However, our data also show that if food is removed

before it can be consumed, then these neurons revert to their

activity level prior to food presentation (Figures 5G and 5J). We

have likewise found that inaccessible food induces smaller and

less durable changes in AgRP and POMC neuron activity (Fig-

ures 5C and 5F). Together, these findings suggest that food

detection modulates AgRP and POMC neurons in a way that an-

ticipates the change in their activity that will occur following food

consumption, taking into account factors such as the food’s

energy density, perceived accessibility, and the nutritional state

of the mouse (Figure 7G).

What is the purpose of this anticipatory regulation? We pro-

pose that it represents a mechanism to rapidly inhibit foraging

and other appetitive behaviors once food has been discovered

(Figure 7G). In this regard, activation of AgRP neurons induces

not only food consumption but also motivational processes

that drive food obtainment, including dramatic foraging behavior

and a willingness to work for food (Atasoy et al., 2012; Krashes

et al., 2011). These appetitive processes are blocked by food

discovery as part of the natural transition from foraging to

feeding, but themechanisms by which this transition is regulated

have not been described. Our data show that food discovery re-

sults in rapid feedback inhibition of AgRP neurons themselves,

rather than some downstream circuit element, which provides

a direct mechanism to inhibit foraging once food has been ob-

tained. The fact that this feedback occurs at the level of AgRP

neurons is surprising and suggests that the activity of these neu-

rons is particularly important for generating the motivation to

search for food relative to other aspects of feeding behavior.

Models for AgRP-Driven Food Consumption
The natural dynamics of AgRP neuron activity are consistent

with a primary function for these neurons in regulating appetitive

behaviors that promote food discovery. Yet multiple lines of

evidence have suggested a role for these neurons in controlling

food consumption as well. We discuss below two possible

mechanisms by which AgRP neurons could drive food intake

that are consistent with our data.

Subpopulations of AgRP Neurons with Specialized

Functions

A limitation of fiber photometry is that it measures the average

activity of a population of a neurons, which can mask heteroge-

neity in the responses of individual cells. AgRP neurons that proj-

ect to different downstream targets differ in their ability to induce

food intake and in their expression of the leptin receptor (Atasoy

et al., 2012; Betley et al., 2013; Wu et al., 2012). It is therefore un-

likely that all AgRP neurons show identical responses to stimuli

such as hormone challenge or food presentation. One possibility

is that a subset of AgRP neurons are activated, rather than in-

hibited, by food presentation, and this subpopulation of AgRP
neurons is responsible for driving food consumption. Testing

this possibility will require measuring the single-cell dynamics

of AgRP neurons during behavior, using approaches such as

optogenetic phototagging combined with in vivo recording

(Lima et al., 2009) or fluorescence microendoscopic imaging

(Ziv et al., 2013).

While future experiments are likely to uncover additional

heterogeneity in these cells, three observations argue against

this heterogeneity being the primary explanation for how AgRP

activity drives food consumption. First, the magnitude of the

decrease in AgRP calcium dynamics that we observe following

food presentation, particularly for palatable foods (Figure 4F),

is inconsistent with a major subset of these neurons having the

opposite regulation. Therefore, if some AgRP neurons are acti-

vated during feeding, they must represent a minority of the pop-

ulation. Second, our analysis of AgRPdynamics during individual

feeding bouts reveals that AgRP activity declines immediately

preceding meal initiation and then is relatively flat during the

course of food intake (Figure 6D). These intrameal dynamics

are not what would be predicted for a neuron whose activity

directly drives food consumption. Third, and most importantly,

we have shown that food presentation potently inhibits AgRP

projections to the PVH (Figure 7). Optogenetic experiments

have strongly implicated these ARC / PVH projections in the

control of food intake (Atasoy et al., 2012; Betley et al., 2013).

The fact that these PVH projections show the same activity

pattern as the population as a whole argues that projection-spe-

cific dynamics are unlikely to be the primary explanation for how

these neurons can drive feeding.

Learning Mediated by AgRP Activity

An alternative possibility is that AgRP neurons drive food con-

sumption indirectly via a learning process. In this regard, we

have shown that the inhibition of AgRP activity following food

discovery is contingent on subsequent food intake, since this

inhibition is reversed if the food is removed before it can be

consumed (Figure 5G). If AgRP activity has negativemotivational

valence (analogous to the unpleasant sensation of hunger), then

this might enable animals to learn the consequences of failing to

eat after obtaining food. In this model, food discovery would

temporarily relieve the sensation of hunger, but animals would

learn through experience that this sensation returns if the food

is not consumed. Over time, this would result in appetitive and

consummatory aspects of feeding becoming linked in sequence

so that food discovery is always followed by food intake, even

though AgRP activity itself would largely be extinguished before

the onset of feeding. Alternative models based on negative

reinforcement and learning are also conceivable, and untan-

gling these possibilities will be an important area for future

investigation.

Neural Input into AgRP and POMC Neurons
Communicates the Discovery of Food
AgRP and POMC neurons receive abundant neural input, and

indeed, the activation of AgRP neurons by fasting is mediated

primarily by increased excitatory tone (Liu et al., 2012; Yang

et al., 2011). Yet most studies of these cells have focused on

the role of hormones and nutrients, and the role of this afferent

neural input has remained unclear. Our data indicate that one
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function of this neural input is to communicate to AgRP and

POMC neurons the discovery of food. This is appealing because

it demonstrates a function for this synaptic input that extends

beyond merely serving as a redundant source of homeostatic in-

formation. The fact that the strength of this neural input varies

depending on the hedonic properties of the detected food sug-

gests that, at some level, the upstream circuit encodes an asso-

ciation between sensory information and the food’s nutritional

content (i.e., a ‘‘food memory’’). Identification of the neural sub-

strate of this association may provide an entry point into the

study of the maladaptive associations between sensory cues

and food that develop in some eating disorders. As several cell

types that provide input into AgRP neurons have recently been

identified (Krashes et al., 2014), it should be possible to elucidate

this afferent pathway using modern circuit mapping techniques.

Information Processing by Arcuate Feeding Circuits
Feeding is influenced by diverse types of signals including sen-

sory, hedonic, homeostatic, and visceral cues. A long-standing

question has been whether there exists a site in the brain where

the neural circuits that sense these signals converge, thereby

enabling integration of this information into a single decision to

eat or not to eat (Friedman, 2014). The arcuate nucleus in this

model is traditionally viewed as a sensor for homeostatic cues,

which it then relays to higher centers where more complex inte-

gration occurs. This viewpoint is encapsulated in the fact that

AgRP and POMC neurons are often described as ‘‘first order’’

neurons, analogous to primary sensory transduction neurons

such as rods and cones in the visual system.

A complication for this model as mentioned previously is that

AgRP and POMC neurons are strongly regulated by neural input

and therefore are notmerely sensors of circulating nutritional sig-

nals. However, absent an understanding of the function of this

afferent input, it has not been possible to assemble a complete

picture of the role of these cells. The discovery that this input

contains information about the sensory and hedonic properties

of food reveals that these long-studied neurons themselves

integrate multiple types of food-related information and indeed

may represent a key convergence point in the feeding circuit.

The further application of new methods for recording cell-type-

specific neural activity is likely to provide additional insight into

how this complex integration is achieved.

EXPERIMENTAL PROCEDURES

Experimental protocols were approved by the University of California, San

Francisco IACUC following the NIH guidelines for the Care and Use of Labora-

tory Animals.

Stereotaxic Surgery

Recombinant AAV expressing GCaMP6s (AAV1.Syn.Flex.GCaMP6s) was pur-

chased from the Penn Vector Core. AAV was stereotaxically injected into the

ARC of AgRP-IRES-Cre and POMC-Cre mice. In the same surgery, a photom-

etry cannula was implanted unilaterally in either the ARC or PVH. Mice were

allowed 2–4 weeks for viral expression and recovery from surgery before

behavioral testing.

Slice Electrophysiology and Calcium Imaging

Acute hypothalamic slices were prepared from 8- to 15-week-old AgRP-IRES-

Cre and POMC-Cre mice expressing AAV GCaMP6s for 2–4 weeks. Fluores-
840 Cell 160, 829–841, February 26, 2015 ª2015 Elsevier Inc.
cent cells in the ARC were identified for whole-cell patch clamp recordings,

and cells were activated using step currents (10 pA, 2 s) from �20 pA

to +120 pA or ramp currents (0–40 pA, 10 s) injected under current clamp

mode. Calcium imaging was performed simultaneously using a digital CCD

camera mounted on an Olympus BX51 microscope.

Immunohistochemistry

Mice were transcardially perfused with PBS followed by formalin. Brains were

postfixed overnight in formalin and placed in 30% sucrose for 2 days. Free

floating sections (40 mm) were prepared with a cryostat, blocked (3% BSA,

2% NGS, and 0.1% Triton-X in PBS for 2 hr), and then incubated with primary

antibody (chicken anti-GFP, Abcam, ab13970, 1:1,000) overnight at 4�C. Sam-

ples were washed, incubated with secondary antibody (goat anti-chicken

Alexa 488 secondary antibody; Invitrogen, 1:500) for 2 hr at room temperature,

mounted, and imaged.

Fiber Photometry

A rig for performing fiber photometry recordings was constructed following

basic specifications previously described (Gunaydin et al., 2014). All experi-

ments were performed in behavioral chambers (Coulbourn Instruments,

Habitest Modular System) and video recorded using infrared cameras installed

above each cage. Experiments were performed at the beginning of the dark

cycle (CT12–CT14) to control for circadian factors and performed in a dark

environment with illumination of red or infrared light. Mice were acclimated

to the behavioral chamber for at least 15 min prior to the beginning of each

testing session.

For hormone challenge, ghrelin (60 mg/mouse) or vehicle (PBS) was deliv-

ered by intraperitoneal injection in a total volume of 200 ml. For food presenta-

tion experiments, mice were exposed in their home cage prior to testing to

both peanut butter and the rubber stopper in order to remove any effects of

novelty. Mice were not exposed to chocolate prior to testing. Liquid diet exper-

iments were performed using a behavioral chamber equipped with an optical

lickometer (Coulbourn Instruments). Mice were habituated to a liquid diet

(Ensure vanilla flavor) for 3 days prior to the experiment. Mice were then fasted

overnight, acclimated to the behavioral chamber for 15 min, and then a bottle

filled with liquid diet was plugged into the lickometer system and the trial was

run for 1 hr. Photometry data were subjected to minimal processing consisting

of only autofluorescence background subtraction and within trial fluorescence

normalization.

Statistics

Values are reported as mean ± SEM in the figures and text. p values for pair-

wise comparison were performed using a two-tailed Student’s t test. p values

for comparisons across multiple groups were corrected using the Holm-Sidak

method in Prism. *p < 0.05. **p < 0.01,***p < 0.001,****p < 0.0001.

See also Extended Experimental Procedures.
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